Ursa Major

Ursa Major


Transit Date of principal star:
8 March


Ursa Major is a large sprawling constellation, the third largest in fact. It's mainly known as the home of the Big Dipper (UK: the Plough), certainly the best known asterism in all the heavens. The constellation offers a number of objects, some well known, others rather obscure, and one star that has recently been in the news as having at least one "temperate" planet circling about it.

The stars are fairly bright, and widely dispersed. The Big Dipper/Plough covers only half of the breadth, and the constellation extends much farther south, with its most southerly star, xi Ursae Majoris (Alula Australis), as far south as Leo and Cancer.

The name "The Great Bear" seems to have been assigned to the constellation in antiquity, due to its northern latitudes. Only a prodigious bear could live in such a northerly clime. Interestingly, a number of North American tribes (Algonquin, Iroquois, Illinois, and Narragansett, among possibly others) also associated the constellation with a gigantic bear.

In Greek mythology Callisto, daughter of King Lycaon, was chosen as a young child to be one of Artemis's companions. Now Artemis was Apollo's sister, patroness of childbirth and protector of babies and of suckling animals. The one thing she prized above all was her chastity; she even asked Zeus for eternal virginity, which he granted.

Artemis gathered about her a number of young nymphs. Reflecting her own vows on chastity, she also required complete fidelity from these young women (girls actually, who would grow into womanhood). One of these was Callisto.

Zeus had the habit of seducing young maidens, and eventually he got around to Callisto. When Artemis discovered that Callisto was pregnant, she took her revenge. Artemis loved to hunt; she would take her revenge in the chase. So she changed Callisto into a bear. (Remember that Artemis is the same goddess that caught Actaeon watching her bath. She turned him into a stag then set his own hounds on him. They ripped him to pieces.)

So Artemis's plan was to have Callisto, as a bear, hunted down and killed. But Zeus took pity, and sent Callisto to the heavens, keeping the same form of a bear. Her son Arcas would grow up to be the ancestral founder of the Arcadians, before he too joined his mother in the heavens as Ursa Minor.


The constellation itself doesn't have a particularly memorable shape to it; few of us bother to discover the form of a bear in the heavens. Rather it is the asterism known as the Big Dipper (or Plough if you live in the UK) that is most noticeable.
The stars that make up the Big Dipper are seven in number, and follow the Greek alphabet, making them easy to remember. Thus, apart from alpha Ursae Majoris, the Dipper's bowl is made up of beta, gamma, and delta, then epsilon, zeta, and eta finish the asterism.

This particular asterism has also a long history, seen in many cultures as a chariot or wagon. (Burnham, as one would expect, has a thorough discussion on this aspect of the constellation.)

The seven are not moving in the same direction, and over time the asterism will dissolve. In fact, it is only the last 50,000 years or so that a discernible "dipper" has formed. As the stars move their separate ways, the shape will more and more become plough-like, with the pointer star (alpha Ursae Majoris) moving in front of the rest, and somewhat south of its present position.

This star, alpha UMa (Dubhe: the Bear), is a yellow giant, about 25 times the size of the Sun, and 86 light years away. It is a close visual binary, discussed below.

Beta Ursae Majoris is named Merak, or "loin"; gamma is Phecda: thigh, and delta is called Megrez: root (or base) of the tail. These three are similar stars, all white (A-type) stars, and all within 100 light years distance.

When we go out onto the tail, we first encounter epsilon UMa, an alpha-CV type variable (see below), and another A-type white star. Called Alioth (which no one has adequately translated) the star is one of the brightest in the constellation, although one of the more distant stars (if we go by its parallax). The star tables show a distance of only 64 light years. This distance is disputed and may be too small; the parallax indicates a distance of 360 light years.

Then comes zeta Ursae Majoris (Mizar: girdle or apron). This star forms a fine binary (perhaps optical?) with Alcor (80 UMa) (see below). The star is 78 light years away according to its parallax.

Finally we have eta Ursae Majoris, called either Benetnasch or Alkaid, both of which mean "chief of the mourners". This is a blue-white star, a bit further than the rest at about 95 light years.


Other stars in Ursa Major.

Omicron Ursae Majoris is called Muscida, meaning "muzzle", and indeed this star marks the bear's nose. Muscida has a very faint (15m) companion, a dwarf star at PA 191 degrees and separation of 7".

Nearby, marking the bear's ear, is a small group of stars made up of sigma1, sigma2, and rho. Our constellation map marks the spot simply with a lower-case sigma. The visual binary sigma2 is discussed below.

Xi Ursae Majoris is far to the south, marking one of the bear's feet. This star is not only an interesting binary, but also an historic one, as it was the first binary to have its orbit calculated (in 1828).


Double stars in Ursa Major:

[Note: See the Binocular Section link, below, for updated figures.]

Several have just been mentioned. But there are other binaries in Ursa Major worthy of investigating.

Dubhe (Alpha Ursae Majoris) is a well-known binary, with a close 4.8m companion which orbits every 44.66 years. In 2000 the values are: 1.9, 4.8; PA 214º, separation 0.6".

Phi UMa is even closer these days [PA 243º, separation 0.23"] but the distance is gradually widening. It has a period of 105.5 years. The two stars are similar in magnitude: 5.3, 5.4, resulting in a combined magnitude of 4.6.

Sigma2 UMa is a much easier binary to resolve; presently the separation is 3.8" at PA 355º. The companion, a rather dim 8.2 visual magnitude, describes a leisurely 1067 year orbit. As with many slowly orbiting binaries, this one has had a variety of calculated periods, although Burnham's "best modern computation [of] 706 years" is now considered out of date.

Xi UMa is an attractive binary [4.3, 4.8] with a fast orbit. This star shouldn't cause too many problems to resolve; its closest point came in 1993 and it too is widening, presently sitting at PA 302º and separation 1.3". The star was designated an RS CVn type variable in 1993.

Zeta UMa, Mizar, is the best of the bunch and probably the easiest to find as well. A multiply system with Alcor, AB form a fixed binary at PA 152º, separation 14.4". Alcor (component C) is a distant 12 minutes east (709").

Mizar was the first binary system to be discovered (in 1650), and is usually the first binary to be found and studied by amateur astronomers. No matter how long you study the stars, coming back to Mizar is always a treat.

Both A and B are also spectroscopic binaries (that is, each one has a companion too faint for observation but which shows up when studied spectroscopically). The presence of such a companion is deduced from changes in the doppler shift in the spectral lines of the primary.

Although at a great distance from Mizar (perhaps three light years away), Alcor (80 UMa) may be gravitationally bound to this star as it shares the same proper motion. However, most authorities believe the stars only form an optical binary.

This is a 3.99 visual magnitude star, 81 light years away. Alcor serves as a good jumping off point to study M101, a spectacular face-on spiral galaxy (see below).


Variable stars in Ursa Major:

Ursa Major has no notable variables, but there are a number which might be of some interest.

Epsilon Ursae Majoris is an alpha-CVn type variable: 1.76-1.78 every five days and two hours.

Alpha-Canum Venaticorum type stars are rotating variables which typically evince very little change in visual magnitude. These stars are generally A-type (that is, they have a spectrum range of B9-A5) but curiously enough they show an unusual abundance of a number of heavy metals and a corresponding lack in the more common elements.

These stars are divided into three groups: those with predominantly silicon spectral lines, those with manganese, and those with chromium-strontium lines. Epsilon Ursae Majoris shows a strong chromium line.

R Ursae Majoris is a Mira-type variable with period of 301.62 days, and a magnitude change from 6.5 to 13.7. Curiously, it is actually a brighter red when at its minimum; at maximum it loses much of its colour. The 2000 maximum was expected in the latter half of March.


Deep Sky Objects in Ursa Major:

Ursa Major has five Messier objects: M40, M81, M82, M97, and M101.

M40 is the Messier object that really isn't one. In 1764 Messier went looking for an object that had been catalogued as a nebulosity in this area. What he found was two ninth-magnitude binary stars, very close together, which he assumed had been mistakenly catalogued as the nebulosity. However instead of leaving the matter there, he proceeded to catalogue the stars as his No. 40.

A hundred years later the stars were catalogued by Winnecke as binaries called "Winnecke 4"; they still go by this name. The binary (9.9, 9.3; PA 83 degrees, and separation 49") is found one and a half degrees north-east of delta UMa. The easiest way to find the binary is to draw a line from delta to 70 UMa, then another half a degree beyond this point.
M81 (NGC 3031) is a superb spiral galaxy, and with M82 in the same field, half a degree to the north, forms a splendid pair.

The distance is approximately seven to nine million light years and, as Burnham reports, the galaxy is considered one of the most dense galaxies known, with a total mass of 250 billions suns. A large scope is needed to catch the fine detail in the spiral's arms.
M82 (NGC 3034) floats above M81 like an ethereal UFO; any minute you think it's going to zip away in the night sky.

The galaxy isn't, as one might think, a spiral on edge, but is usually described as spindle shaped. The galaxy is rather mysterious; it's thought that an explosion at its centre one and a half million years ago created the odd shape, which is still expanding at a rate of 950 km/second.
M97 (NGC 3587) often called the "Owl Nebula" for its two dark central areas (revealed only in the largest telescopes) resemble an owl's eyes. The nebula is formed by the still expanding shell of its central star, which is very small and compact, with a surface temperature as much as 85,000 kelvin.

M101 (NGC 5457) is a vast galaxy, one of the largest known, with open spirals. Although seen face on, it's fairly dim; it takes a large scope and an exceptionally good night to see this nebula at its best.

Located five and a half degrees east of zeta UMa, the usual method given to find M101 is to star hop. From zeta UMa (Mizar) proceed to Alcor, then over and slightly north to 81 UMa, and now down to the southeast to 83, then 84. Now locate 86 UMa, to the southeast. This star forms the bottom point of a wide-v shape with 84 and M101.

Some stars of note:

Groombridge 1830 and Lalande 21185, both of which require a finder's chart, and 47 Ursae Majoris, which has recently been found to have a planet which could theoretically support water.

Groombridge 1830 is famous for having one of the largest proper motions, (7.050 arc seconds) third after Barnard's Star and Kapteyn's Star. In only 511 years it shifts its position by one degree. It's 28.8 light years away, and has a space velocity of 312 km/s. Its Epoch 2000 values are: right ascension 11h, 52m, 58.7s; declination +37 degrees, 43', 07".

Called a subdwarf, the star has about half the diameter of the Sun and only one-fifth of its luminosity; yet because it is so close, its visual magnitude is a fairly bright 6.45.

To locate Groombridge 1830 first draw a line between phi Ursae Majoris and xi Ursae Majoris. Move up this line to its midpoint then look to the east roughly at the same distance. You are now in the vicinity. There are several 6m stars in the region, but only one just north of a small but bright galaxy (NGC 3941). This is Groombridge 1830.

Lalande 21185 is a red dwarf of very small mass (about one third of the Sun's). Quite close at 8.2 light years, its proper motion is also very fast, at 4.777 arc seconds, and it has a space velocity of 187 km/s. Its Epoch 2000 values are: right ascension 11h, 03m, 20.2s; declination +35 degrees, 58', 13".

Lalande 21185 has a visual magnitude of only 7.49, and an absolute magnitude of 10.49. Finding the star could be an adventure; Burnham's finder's chart (on his page 1981) is useful.

First start from xi UMa. Star-hop to nu UMa, just to the north two degrees, then find the brightest star lying to the west (about six degrees). This is 46 Leonis Minoris; the fainter star just to the east is in Ursa Major, but is called 47 Leonis Minoris. Now move to the north one and three-quarter degrees. This is a rather bleak part of the sky. Two degrees to the east you're in the field; now you have to rely on the finder's chart.


On 17 January, 1996, Geoffrey Marcy and Paul Butler announced they had found two new Jupiter-sized planets circling visible stars: 70 Virginis and 47 Ursae Majoris.

In the late summer of 2001 a second planet was announced as being associated with 47 UMa. These planets go under the labels "47 UMa b" and "47 UMa c".

It took eight years of observation from the Lick Observatory, outside San Jose, California, to verify the first planet orbiting 47 Ursae Majoris. It has a period of 1089 days, a mass of 2.54 Jupiters, an orbital radius approximately twice that of the Earth's, and according to the official press release it "probably has a region in its atmosphere where the temperature would allow liquid water."

47 UMa "c" has a mass of 0.76 Jupiters and an orbit of 2594 days. These two planets orbit 47 UMa at a comparable distance between Mars and Jupiter in our solar system, with the newly discovered "c" planet being the more distant of the two. There may be more, smaller, planets in the system.

The planets' "sun", 47 UMa, is remarkably similar to ours: it's spectral type is G0V (the Sun's is G2V), it has a surface temperature of 5882 kelvin (the Sun's is 5780), and an absolute magnitude of 4.40 (Sun: 4.79).

You can arrive at 47 Ursae Majoris from a number of directions. Perhaps the easiest is to start at phi UMa and drop down in a south-south-west direction five degrees. You'll find three bright stars in a crescent. The most northerly star of this trio is 47 UMa

Alternatively, locate the triangle formed by phi UMa, mu UMa, and 46 LMi. At the centre of this triangle, move slightly to the east, where you will find this trio of stars.


For a little more on Ursa Major visit the Binocular Section.


Return to the previous page:

Or go to

the Main Menu


All files associated with The Constellations Web Page are
© Richard Dibon-Smith.